A Novel Square Root Adaptive Unscented Kalman Filter Combined with Variable Forgetting Factor Recursive Least Square Method for Accurate State-of-charge Estimation of Lithium-Ion Batteries

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Adaptive Square Root Unscented Kalman Filter Approach for State of Charge Estimation of Lithium-Ion Batteries

An accurate state of charge (SOC) estimation is of great importance for the battery management systems of electric vehicles. To improve the accuracy and robustness of SOC estimation, lithium-ion battery SOC is estimated using an adaptive square root unscented Kalman filter (ASRUKF) method. The square roots of the variance matrices of the SOC and noise can be calculated directly by the ASRUKF al...

متن کامل

State of Charge Estimation of Lithium-Ion Batteries Using an Adaptive Cubature Kalman Filter

Accurate state of charge (SOC) estimation is of great significance for a lithium-ion battery to ensure its safe operation and to prevent it from over-charging or over-discharging. However, it is difficult to get an accurate value of SOC since it is an inner sate of a battery cell, which cannot be directly measured. This paper presents an Adaptive Cubature Kalman filter (ACKF)-based SOC estimati...

متن کامل

A New State of Charge Estimation Algorithm for Lithium-Ion Batteries Based on the Fractional Unscented Kalman Filter

An accurate state of charge (SOC) estimation is the basis of the Battery Management System (BMS). In this paper, a new estimation method which considers fractional calculus is proposed to estimate the lithium battery state of charge. Firstly, a modified second-order RC model based on fractional calculus theory is developed to model the lithium battery characteristics. After that, a pulse charac...

متن کامل

The square-root unscented Kalman filter for state and parameter-estimation

Over the last 20-30 years, the extended Kalman filter (EKF) has become the algorithm of choice in numerous nonlinear estimation and machine learning applications. These include estimating the state of a nonlinear dynamic system as well estimating parameters for nonlinear system identification (e.g., learning the weights of a neural network). The EKF applies the standard linear Kalman filter met...

متن کامل

Adaptive State of Charge Estimation for Li-Ion Batteries Based on an Unscented Kalman Filter with an Enhanced Battery Model

Accurate estimation of the state of charge (SOC) of batteries is one of the key problems in a battery management system. This paper proposes an adaptive SOC estimation method based on unscented Kalman filter algorithms for lithium (Li)-ion batteries. First, an enhanced battery model is proposed to include the impacts due to different discharge rates and temperatures. An adaptive joint estimatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Electrochemical Science

سال: 2022

ISSN: ['1452-3981']

DOI: https://doi.org/10.20964/2022.09.27